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Abstract
We introduce and explore a model of an ensemble of enzymes searching, in
parallel, a circular DNA strand for a target site. The enzymes performing the
search combine local scanning—conducted by a 1D motion along the strand—
and random relocations on the strand—conducted via a confined motion in
the medium containing the strand. Both the local scan mechanism and the
relocation mechanism are considered general.

The search durations are analysed, and their limiting probability
distributions—for long DNA strands—are obtained in closed form. The
results obtained (i) encompass the cases of single, parallel and massively
parallel searches, taking place in the presence of either finite-mean or heavy-
tailed relocation times, (ii) are applicable to a wide spectrum of local scan
mechanisms including linear, Brownian, selfsimilar, and sub-diffusive motions,
(iii) provide a quantitative theoretical justification for the necessity of the
relocation mechanism, and (iv) facilitate the derivation of optimal relocation
strategies.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The biological mechanism of DNA-searching has attracted major interest in recent years
from both experimentalists—investigating the mechanism in vivo and in vitro [1–10]—and
theoreticians—constructing mathematical models of the mechanism [11–16].

DNA-searching is usually performed in parallel by an ensemble of enzymes operating
simultaneously. In a process referred to as ‘facilitated diffusion’, the enzymes alternate
between a 1D motion along the DNA strand and a confined motion within the cellular medium
containing the DNA strand [2, 6–11]. An enzyme conducting a 1D motion along the DNA
strand occasionally disengages it, and commences the confined motion. The confined motion—
after a period of time henceforth called the relocation time—‘lands’ the enzyme on a new
location on the DNA strand, from which the enzyme resumes the 1D motion (the new location
may or may not be correlated with the enzyme’s last ‘disengagement location’ [6, 16]).
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Figure 1. An illustration of the facilitated diffusion mechanism. The x-axis denotes time; the y-axis
denotes the enzyme’s location along the strand. (a) Local scanning conducted by a linear motion.
(b) Local scanning conducted by a random motion. The vertical bars represent the disengagement
epochs; the horizontal gaps following the vertical bars represent the relocation durations.

The goal of the search is to find a target site on the DNA strand. In principle, the length
of the target site is far smaller than the length of the embedding DNA strand. The variable of
interest is the enzyme-ensemble search duration: the time elapsing from search initiation till
the ‘first discovery’ of the target site by one of the searching enzymes.

The facilitated diffusion mechanism combines two key features: (i) local scanning—
conducted by the 1D motion along the DNA strand—and (ii) relocation—caused by the
confined motion in the surrounding medium. See figure 1 for a schematic illustration of
the facilitated diffusion mechanism. This mechanism turns out to be highly effective and
efficient [2, 6–14]. Reference [15] provides a careful study of DNA searching in which the
parameters of the local scanning and the relocation are externally controlled.

In this paper we introduce and explore a stochastic model of parallel and massively parallel
searching of circular DNA strands (including, in particular, DNA plasmids [17]). The parallel
search is performed by an ensemble of enzymes operating simultaneously and combining local
scanning and relocation. The search is rendered massively parallel when the size of the agent
ensemble is large.

The model proposed is fairly general and robust, yet tractable and amenable to
mathematical and statistical analysis. It goes beyond existing theoretical models (i)
by considering arbitrary local-scanning and relocation mechanisms—including anomalous
mechanisms—and (ii) by yielding closed-form results for the limiting distributions of the
search durations—whereas the existing models focus mainly on the mean search durations.
From a more abstract perspective, the model proposed falls into the category of general search
models [18–21].

The paper is organized as follows. We begin, in section 2, with the formulation of the
model and with the statistical analysis of the search duration in the case of a single searching
enzyme. In section 3 long DNA strands are considered, and probabilistic limit laws for the
search durations are obtained in the case of single, parallel, and massively parallel searches. In
section 4 the role of the relocation mechanism is investigated, and the question ‘is relocation
beneficial?’ is formulated and answered quantitatively. In section 5 three specific classes of
local scanning mechanisms are examined: linear motions, Brownian motions, and selfsimilar
motions (this last class includes fractional Brownian motions and fractional Lévy motions).
Section 6 modifies the model proposed by incorporating a general ‘halting mechanism’
affecting the enzymes’ local scanning. This modification accommodates, in particular, the class
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of sub-diffusive local scanning mechanisms. We conclude, in section 7, with an investigation
of massively parallel searches of stationary DNA–enzyme systems.

A note regarding notation and nomenclature

Throughout the following, P(·) = Probability; E[·] = Expectation; and ˜X(θ) := E[exp{−θX}]
(θ � 0) denotes the Laplace transform of a non-negative valued random variable X .

A non-negative random variable X is said to be heavy tailed of order α (0 < α < 1) if it is
asymptotically Pareto with exponent α: P(X > x) ∼ a/xα, as x → ∞ (where a is an arbitrary
positive constant).

2. Modelling and analysis

Consider a circular DNA strand composed of l + n base-pairs. The strand consists of a target
site l base-pairs long, and its remainder is n base-pairs long. A single enzyme searches the
strand for the target site, as follows.

The enzyme begins its search from a random initial position along the strand. If, by chance,
the initial position is within the target site then the search is concluded. Otherwise, (i) the
enzyme initiates a local scan and (ii) an exponential timer is set. If the local scan traces the
target site before the timer expires then the search is concluded. Otherwise, upon the timer’s
expiration, the enzyme relocates to a new random position along the strand, and the search
begins anew.

We introduce the following random variables.

• S := the duration of a local scan, initiated from a random position along the n ‘non-target’
base-pairs of the strand.

• R := the relocation time.
• T := the overall search duration.

Moreover, we set λ to denote the relocation rate (i.e. the rate of the exponential timer), and
set p := n/(l + n) to denote the fraction of the ‘non-target’ base-pairs.

Both the local-scan mechanism and the relocation mechanism are considered general—
implying, in turn, that S and R are arbitrarily distributed non-negative valued random variables.

The following proposition gives the precise mathematical connection, in the Laplace
domain, between the distributions of the ‘input’ random variables S and R and the distribution
of the ‘output’ random variable T .

Proposition 1. The Laplace transform of the overall search duration T is given by

˜T (θ) = 1 − p(1 − ˜S(λ+ θ))

1 − p(1 − ˜S(λ+ θ)) λ
λ+θ ˜R(θ)

(1)

(θ � 0).

As we shall demonstrate in the following, there is a deep and marked difference between
the case of finite-mean relocation times (E[R] < ∞) and the case of infinite-mean relocation
times (E[R] = ∞). In the latter case we shall henceforth assume that the relocation time R is
heavy tailed. Proposition 1 implies the following corollaries.

Finite-mean relocation times. If the relocation time R possesses a finite mean then so does
the overall search duration T , and
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E[T ] = p(1 − ˜S(λ))

1 − p(1 − ˜S(λ))
·
(

E[R] + 1

λ

)

. (2)

Hence, the mean overall search duration E[T ] is an affine function of the mean relocation
time E[R]. We emphasize that the scanning duration S is not required to posses a finite mean
in order to assure that the overall search duration T possesses a finite mean.

Infinite-mean relocation times. If the relocation time R is heavy tailed of order α (0 < α <

1) then so is the overall search duration T , and

P (T > t) ∼
t→∞

p(1 − ˜S(λ))

1 − p(1 − ˜S(λ))
·P (R > t). (3)

Hence, the overall search duration’s survival probability P (T > t) is, asymptotically, a
linear function of the relocation time’s survival probability P (R > t). Heavy-tailed relocation
durations can be considered to be induced by anomalous confined motions [22].

The proofs of proposition 1 and its corollaries are given in appendix A.

3. Searching long DNA strands

Often, the length of the DNA strand is considerably larger than the length of its target site:
namely, n � l. In such cases it is of interest to study the asymptotic behaviour, as n → ∞, of
the overall search duration. To this end we set (Tn, Sn, pn) to be the random variables/parameter
corresponding to a DNA strand with n non-target base-pairs (the relocation time R and the
relocation rate λ are independent of n).

The following technical condition is required to hold:

lim
n→∞ n · ˜Sn(λ+ δn) = ψ(λ) (4)

for all λ > 0 and all non-negative valued sequences {δn}∞n=1 decaying to zero. Namely, it is
required that the limit appearing in the left-hand side of equation (4) exists. The limit ψ(λ)
shall henceforth be referred to as the ‘scan function’.

The asymptotic analysis of the overall search durations Tn , in the limit n → ∞, is
presented in section 3.1. The results obtained are then generalized to the case of parallel
searches (section 3.2) and massively parallel searches (section 3.3)—conducted by a multitude
of enzymes searching the DNA strand in parallel. Examples and analysis of scanning
mechanisms satisfying the technical condition of equation (4) are presented in sections 5 and 6
below.

3.1. Asymptotic analysis

The asymptotic behaviour, as n → ∞, of the overall search durations Tn is highly contingent
on whether or not the relocation time possesses a finite mean.

Proposition 2 (Finite-mean relocation times). If the relocation time R possesses a finite
mean then the scaled random variables Tn/n converge, in law, as n → ∞, to a limiting
random variable T∞ which is exponentially distributed:

P (T∞ > t) = exp

{

− l + ψ(λ)

E[R] + 1/λ
· t

}

(5)

(t � 0).
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Figure 2. Simulations of a single enzyme searching a circular DNA strand of length n + l = 2000.
(a) Local scanning conducted by a linear motion with velocity v = 5; the length of the target site
is l = 5; number of simulations 2 × 105. (b) Local scanning conducted by a Brownian motion
with diffusion parameter D = 1; the length of the target site is l = 10; number of simulations
5 × 104. The empirical probability density function p(t) of the scaled overall search durations
is depicted on a logarithmic plot: log(p(t)) versus t . The simulations were carried out for finite-
mean relocation times, with mean E[R] = 10, drawn from various probability laws: deterministic;
log-normal; exponential; gamma; and stretched exponential. The solid line depicts the theoretical
exponential limit predicted by proposition 2—to which the simulations closely fit. The simulations
also demonstrate the phenomena of universality with respect to the relocation mechanism.

Proposition 3 (Infinite-mean relocation times). If the relocation time R is heavy tailed of
order α (0 < α < 1) then the scaled random variables Tn/n1/α converge, in law, as n → ∞,
to a limiting random variable T∞ which is heavy tailed of order α:

P (T∞ > t) ∼
t→∞

1

l + ψ(λ)
· P (R > t). (6)

In fact, in the infinite-mean case the limiting random variable T∞ admits the multiplicative
probabilistic representation T∞ = L · E1/α , where L and E are independent random variables
and (i) L is Lévy distributed with exponent α and (ii) E is exponentially distributed with rate
l + ψ(λ).

Two remarks are in place.

• The finite-mean and infinite-mean cases are markedly different—requiring different
scalings (n in the finite-mean case, and n1/α in the infinite-mean case), and yielding
different limiting distributions (exponential in the finite-mean case, and heavy tailed in
the infinite-mean case).

• The limiting distribution, in the finite-mean case, is universal with respect to the relocation
mechanism—being contingent on the mean relocation time E[R] alone (rather than on
the distribution of the relocation time). Such universality fails to hold in the infinite-
mean case—where the limiting distribution is contingent on the survival probability of the
relocation time.

See figure 2 for computer simulations illustrating the universality phenomena taking place
in the case of finite-mean relocation times. The proofs of propositions 2 and 3 are given in
appendix A.

5



J. Phys.: Condens. Matter 19 (2007) 065140 I Eliazar et al

3.2. Parallel searching

We now generalize the asymptotic results of section 3.1 to the case of an ensemble of enzymes
searching a long circular DNA strand, in parallel, for the target site.

Consider a DNA strand, with n non-target base-pairs, being searched by an ensemble of m
enzymes operating simultaneously and independently. Assume that once a ‘search command’
is given it takes each enzyme (independently of all other enzymes) a random time of length R0

to initialize its search procedure. Thus, the time it takes an enzyme to trace the target site is
R0 + Tn (Tn being the overall search duration defined and analysed above).

Let T m
n denote the enzyme-ensemble search duration—i.e. the time elapsing till the ‘first

discovery’ of the target site. Since the enzymes operate independently, the random variable T m
n

is the minimum of m independent copies of the random variable R0 + Tn . This observation
implies that

P
(

T m
n > t

) = (P(R0 + Tn > t))m . (7)

For long strands (n � l)—assuming the technical condition of equation (4) holds—
equation (7) implies, respectively, the following corollaries of propositions 2 and 3.

Finite-mean relocation times. If the relocation time R possesses a finite mean then the scaled
random variables T m

n /n converge, in law, as n → ∞, to a limiting random variable T m∞ which
is asymptotically exponential:

P
(

T m
∞ > t

) ∼
t→∞ exp

{

−m
l + ψ(λ)

E[R] + 1/λ
· t

}

. (8)

Infinite-mean relocation times. If the relocation time R is heavy tailed of order α (0 < α <

1) then the scaled random variables T m
n /n1/α converge, in law, as n → ∞, to a limiting

random variable T m∞ which is asymptotically Pareto with exponent mα:

P (T m
∞ > t) ∼

t→∞

(

P (R > t)

l + ψ(λ)

)m

. (9)

3.3. Massively parallel searching

We now turn to explore the case of a large enzyme ensemble (m � 1) searching a long circular
DNA strand (n � l). The setting is that of the previous subsection, and we study the asymptotic
behaviour of the enzyme-ensemble search duration T m

n in the double limit n,m → ∞.
The proper scaling of the parameters n and m, in the double limit n,m → ∞, turns out to

be limn,m→∞(m/n) = κ , where κ is a positive constant. The meaning of the limiting ratio κ is
‘enzyme concentration per DNA base-pairs’. Assuming the technical condition of equation (4)
holds, we have the following.

Proposition 4. The random variables T m
n converge, in law, as n,m → ∞, to a limiting random

variable T∗ with survival probability

P (T∗ > t) = exp{−�(t)} (10)

(t � 0). The function�(t), in turn, is characterized by the Laplace transform
∫ ∞

0
exp{−θ t}�(t) dt = κ

˜R0(θ)

θ
· l + ψ(λ+ θ)

1 − λ
λ+θ ˜R(θ)

(11)

(θ � 0).
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The distribution of the limiting random variable T∗ is highly contingent on whether or not
the relocation time possesses a finite mean, as the following corollaries of proposition 4 assert.

Finite-mean relocation times. If the relocation time R possesses a finite mean then the
function �(t) follows, asymptotically, a linear growth:

�(t) ∼
t→∞ κ

l + ψ(λ)

E[R] + 1/λ
· t . (12)

Hence, the distribution of the limiting random variable T∗ is asymptotically exponential.

Infinite-mean relocation times. If the relocation time R is heavy tailed of order α (0 < α <

1) then the function �(t) follows, asymptotically, a power-law growth with exponent α:

�(t) ∼
t→∞ κ

sin(πα)

πα
· l + ψ(λ)

P (R > t)
. (13)

Hence, the distribution of the limiting random variable T∗ is asymptotically stretched
exponential with exponent α.

Several remarks are in place.

• Transcending from parallel to massively parallel searches has a dramatic effect on the
timescales of the overall search durations T m

n —reducing them from the orders O(n) and
O(n1/α) (in the case of parallel searches) to the order O(1) (in the case of massively parallel
searches).

• The cases of finite-mean and infinite-mean relocation times yield different limiting
distributions—asymptomatically exponential in the former case, and symptomatically
stretched exponential in the latter case.

• The limiting distribution, in the finite-mean case, is asymptotically universal with respect
to the relocation mechanism—being contingent on the mean relocation time E[R] alone
(rather than on the distribution of the relocation time). Such asymptotic universality fails to
hold in the infinite-mean case (where the limiting distribution is contingent on the survival
probability of the relocation time).

• Heuristically, equation (12) can be derived from equation (8) via the naive substitution
t ′ = nt . The rigorous derivation however—properly taking into account the double limit
n,m → ∞—requires the analysis undertaken in the proof of proposition 4.

• The asymptomatically stretched-exponential limiting distribution of equation (13)
resembles the survival probability obtained in the ‘target problem’ [23, 24].

See figure 3 for computer simulations of massively parallel searches taking place in the
presence of heavy-tailed relocation times. The proofs of proposition 4 and its corollaries are
given in appendix A.

The asymptotic results obtained in this section are summarized in table 1.

4. The relocation mechanism

Let us examine now the relocation mechanism in the case of finite-mean relocation times.
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Figure 3. Simulations of a massively parallel search of a circular DNA strand of length n + l =
2000, conducted by an enzyme ensemble of size m = 100 performing linear scanning with velocity
v = 5. The length of the target site is l = 5, and the ratio of ‘enzymes per base-pairs’ is κ ≈ 0.05.
The relocation times are heavy tailed—drawn from a one-sided Lévy distribution with exponent
α = 0.75. Number of simulations: 4 × 104. The empirical survival probability P>(t) of the
overall search durations is depicted on (a) a standard plot, P>(t) versus t ; (b) a logarithmic plot,
log(− log(P>(t))) versus log(t). The solid line depicts the theoretical stretched-exponential limit
predicted by proposition 4 and equation (13)—to which the simulations closely fit.

Table 1. Searching long DNA strands (n � 1): classification of the asymptotic probabilistic limit
laws of the overall search durations. The rows indicate the search type: single, parallel (m denoting
the number of searching enzymes), or massively parallel. The columns indicate the type of the
relocation time: finite mean or heavy tailed (in the ‘heavy-tailed column’ the numbers in parentheses
are the values of the corresponding exponents). The table summarizes the asymptotic results
obtained in section 3—the appropriate scaling of the overall search durations, and the emerging
probabilistic limit laws.

Finite-mean Heavy-tailed
relocation time relocation time (α)

Single/parallel Scaling: O(n) Scaling: O(n1/α)

search (m) Limit: exponential Limit: Pareto (mα)

Massively parallel Scaling: O(1) Scaling: O(1)

search Limit: exponential Limit: stretched exp. (α)

4.1. Mean performance

Is relocation beneficial? Does the presence of the relocation mechanism improve the search
performance? One way of answering these questions is by comparing the mean search duration
with relocation to the mean search duration without relocation.

Consider a single searching enzyme. With the relocation mechanism ‘shut down’—
corresponding to the degenerate case λ = 0—the search is conducted via scanning alone,
and the mean overall search duration is given by

(1 − pn) · 0 + pn · E[Sn] ∼
n→∞ E[Sn]. (14)

On the other hand, when the relocation mechanism is ‘active’ then the mean overall search
duration is E[Tn], and proposition 2 implies that

E[Tn] ∼
n→∞

E[R] + 1/λ

l + ψ(λ)
· n. (15)

Thus, in order to evaluate the ‘mean impact’ of the relocation mechanism, one has to
compare the asymptotic behaviour (as n → ∞) of the sequences E[Sn] and E[Tn]. When

8
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the sequence E[Tn] grows slower than the sequence E[Sn] then the presence of the relocation
mechanism—from a mean-performance perspective—is indeed beneficial.

See sections 5 and 6 for an examination of specific classes of local scan mechanisms.

4.2. Search optimization

Set φ(λ) = λ · ψ(λ). The ‘search function’

F(λ) = l + ψ(λ)

E[R] + 1/λ
= φ(λ) + lλ

1 + E [R] λ
(16)

governs the asymptotically exponential behaviour of the overall search duration’s limiting
distribution in the case of a single searching enzyme (equation (5)), in the case of parallel
searches (equation (8)), and in the case of massively parallel searches (equation (12)).

It is evident from these equations that the asymptotically optimal relocation rate is that at
which the search function F(λ) is maximized. However, does the search function F(λ) attain a
global maximum? The following proposition gives necessary conditions for the search function
F(λ) to be unimodal.

Proposition 5. Assume that limλ→∞ ψ(λ) = 0 and that the function φ(λ) initiates at the origin
(φ(0) = 0), is concave (φ′′(λ) < 0), and satisfies limλ→∞ φ(λ) = ∞. Then we have the
following.

The search function F(λ) is unimodal: it initiates at the origin (F(0) = 0), increases
monotonically to a global maximum, and thereafter decreases monotonically to the asymptotic
level limλ→∞ F(λ) = l/E[R].

Examples of classes of local scanning mechanisms yielding unimodal search functions
F(λ) are given in section 5. The proof of proposition 5 is given in appendix A.

5. The local scanning mechanism

So far we have drawn general asymptotic results and conclusions for systems with general local
scanning and relocation mechanisms, based on the assumption that the technical condition
of equation (4) holds. In this section we explore three specific classes of local scanning
mechanisms: linear motions, Brownian motions, and selfsimilar motions.

5.1. Linear scanning

Consider a deterministic local scan conducted by a linear directional motion with velocity v.
Since the enzyme begins scanning from a random initial position along the strand, the

resulting duration Sn of the local scan is uniformly distributed on the interval [0, n/v]. This, in
turn, implies that

˜Sn(θ) = 1 − exp{− n
v
θ}

n
v
θ

. (17)

The technical condition of equation (4) is satisfied—yielding the scan function ψ(λ) = v/λ,
and, in turn, the search function

F(λ) = v + lλ

1 + E[R]λ. (18)

9
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Figure 4. Search performance as a function of the relocation rate λ, in the presence of finite-
mean relocation times with mean E[R] = 10, using a linear scanning mechanism (equation (18)).
(a) The monotonically increasing scenario E[R] < l/v. (b) The monotonically decreasing scenario
E[R] > l/v.

Is relocation beneficial?

Since the scanning duration Sn is uniformly distributed on the interval [0, n/v] its mean is
given by E[Sn] = n/2v. Hence, the sequence E[Sn] has the same order of growth—O(n)—as
the sequence E[Tn]. Thus, from a mean-performance perspective, the presence of a relocation
mechanism does not make much of a difference. However, the mean performance provides a
rather narrow perspective. Indeed, as we shall demonstrate shortly, the asymptotically optimal
search strategies exhibit the following dichotomy: either the relocation mechanism should be
used alone (abolishing scanning altogether), or the local scan mechanism should be used alone
(never relocating).

Search optimization

The search function F(λ) admits three qualitatively different forms—the corresponding graphs
are depicted in figure 4. The optimal search strategies, in these three qualitatively different
‘scenarios’, are as follows.

• E[R] < l/v. In this scenario the search function F(λ) increases monotonically from
the level F(0) = v to the level limλ→∞ F(λ) = l/E[R]. Thus, the optimum of the search
function F(λ) is attained at the limit λ → ∞. This, in turn, implies that the asymptotically
optimal search strategy is to repeatedly relocate—spending no time on local scanning—till
‘landing’ on the target site.

• E[R] = l/v. In this ‘borderline’ scenario F(λ) ≡ v, and hence the asymptotic search
performance is independent of the relocation rate λ.

• E[R] > l/v. In this scenario the search function F(λ) decreases monotonically from the
level F(0) = v to the level limλ→∞ F(λ) = l/E[R]. Thus, the optimum of the search
function F(λ) is attained at the point λ = 0. This, in turn, implies that the asymptotically
optimal search strategy is to continue the local scan—never relocating—till ‘hitting’ the
target site.

5.2. Brownian scanning

Consider a random local scan conducted by a Brownian motion with diffusion parameter D
(i.e., the motion’s mean square displacement, after ‘running’ for t units of time, is D · t).

10
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Figure 5. Search performance as a function of the relocation rate λ, in the presence of finite-
mean relocation times with mean E[R] = 10. (a) Brownian scanning (equation (20)) and sub-
diffusive scanning (equation (28)) with parameters l = 2 and D = 10. (b) Selfsimilar scanning
(equation (23)) with parameters l = 10 and cH = 15.

A scaling argument implies that the scanning duration Sn is equal, in law, to (n2/D) · τ—
where τ is the first passage time of a standard Brownian motion from the unit interval, when
initiated from a random location on the unit interval. This, in turn, implies that

˜Sn(θ) =
tanh(n

√

θ
2D )

n
√

θ
2D

. (19)

The scaling argument used, as well as the derivation of equation (19), are explained in
appendix B.

The technical condition of equation (4) is satisfied—yielding the scan function ψ(λ) =√
2D/λ, and, in turn, the search function

F(λ) =
√

2Dλ+ lλ

1 + E [R] λ
. (20)

Is relocation beneficial?

Since the scanning duration Sn is equal in law to (n2/D) · τ , and since E[τ ] = 1/6 (see
appendix B for the details), we have E[Sn] = n2/6D. The growth of the sequence E[Sn] is
thus of order O(n2), whereas the growth of the sequence E[Tn] is of order O(n). Hence, the
presence of the relocation mechanism induces an order-of-magnitude reduction in the mean
search time. Therefore, from a mean-performance perspective, relocation turns out to be very
beneficial indeed.

Search optimization

The scan function ψ(λ) = √
2D/λ satisfies the conditions of proposition 5, and hence the

search function F(λ) is unimodal and attains a global maximum—see figure 5. The optimal
relocation rate λ∗ and its corresponding global maximum level F(λ∗) are given, respectively,
by

λ∗ = 1

E[R] + l2

DE[R]2

(

1 +
√

1 + 2
DE[R]

l2

)

(21)

11
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and

F(λ∗) = l

E[R] + D

l

(

1 +
√

1 + 2
DE[R]

l2

)−1

. (22)

5.3. Selfsimilar scanning

A stochastic process (Z(t))t�0 is said to be H-selfsimilar if for any positive constant c the
process (Z(ct))t�0 is equal, in law, to the process (cH Z(t))t�0. The parameter H (H > 0)
is called the process’ Hurst exponent [25]. The best known examples of selfsimilar processes
are stable Lévy processes—including, in particular, Brownian motion. Examples of selfsimilar
processes with continuous sample-path trajectories are Brownian motion, fractional Brownian
motions and fractional Lévy motions.

In the case of fractional Brownian motions the Hurst parameter takes values in the range
0 < H < 1. In the sub-range 0 < H < 1/2 the motion is negatively correlated and highly
intermittent; in the sub-range 1/2 < H < 1 the motion is positively correlated and long-range
dependent; the ‘border case’ H = 1/2 corresponds to standard Brownian motion.

In the case of fractional Lévy motions the Hurst parameter takes values in the range
1/ν < H < 1, where ν is the process’s Lévy exponent (taking values in the range 1 < ν < 2).
The motion is positively correlated and is long-range dependent.

For a detailed exposition of selfsimilar processes readers are referred to [25].
Consider a random local scan conducted by an H-selfsimilar motion with continuous

sample-path trajectories.
A scaling argument implies that the scanning duration Sn is equal, in law, to n1/H · τH—

where τH is the first passage time of the H-selfsimilar motion from the unit interval, when
initiated from a random location on the unit interval.

If the limit limk→∞ kH · τ̃H(k) := cH exists then the technical condition of equation (4) is
satisfied—yielding the scan function ψ(λ) = cH/λ

H, and, in turn, the search function

F(λ) = cHλ
1−H + lλ

1 + E[R]λ . (23)

The scaling argument used, as well as the derivation of the scan function ψ(λ), are explained in
appendix B. Proving that the limit limk→∞ kH · τ̃H(k) := cH indeed exists is beyond the scope
of this research, and is only conjectured here.

Is relocation beneficial?

Since the scanning duration Sn is equal in law to n1/H · τH we have E[Sn] = n1/H · E[τH]. The
growth of the sequence E[Sn] is thus of order O(n1/H), whereas the growth of the sequence
E[Tn] is of order O(n). Hence, when the Hurst exponent is in the range 0 < H < 1, the
presence of the relocation mechanism reduces the order of the expected search time. Therefore,
from a mean-performance perspective, relocation turns out to be beneficial.

Search optimization

When the Hurst exponent is in the range 0 < H < 1 the scan function ψ(λ) = cH/λ
H satisfies

the conditions of proposition 5, and hence the search function F(λ) is unimodal and attains a
global maximum—see figure 5. The optimal relocation rate λ∗ is the unique positive root of
the algebraic equation

l · xH − cHHE[R] · x + cH(1 − H) = 0. (24)

12
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6. Local scanning with random halting

The searching enzymes, while scanning the DNA strand, may incur random halts. In this
section we modify the searching model to accommodate such a phenomenon.

6.1. The halting mechanism

We introduce a ‘halting mechanism’ which acts on the searching enzymes while scanning the
DNA strand. The halting mechanism is analogous, in model, to the relocation mechanism, and
operates according to the following pair of rules:

• enzyme-halting—during the periods of local scanning—occurs at an exponential rate η
and

• once halted, the enzyme ‘freezes’ for a random duration of time H , after which the local
scanning is resumed.

A comprehensive analysis of such halting mechanisms is conducted in [26]. This analysis
implies that if the Laplace transform of the un-halted scanning duration is ˜Sn(θ), then the
Laplace transform of the halted scanning duration is ˜Sn(θ + H(θ)), where

H(θ) := η
(

1 − ˜H (θ)
)

(25)

(θ � 0). Moreover, if the mean un-halted scanning duration is E[Sn], then the mean halted
scanning duration is (1 + ηE[H ]) · E[Sn].

Hence, the incorporation of the halting mechanism corresponds (i) in Laplace space to the
nonlinear transformation θ �→ θ + H(θ) and (ii) in mean to the multiplication by the factor
(1 + ηE[H ]).

It is straightforward to deduce that if the un-halted local-scanning mechanism satisfies the
technical condition of equation (4) with the scan function ψ(λ), then so does the halted local
scanning mechanism—but with the ‘halted scan function’

ψhalt(λ) := ψ (λ+ H(λ)) . (26)

Thus, from an asymptotic point of view, the incorporation of halting into the search model
boils down to the replacement of the un-halted scan function ψ(λ) by the halted scan function
ψhalt(λ).

Is relocation beneficial?

If the halting time H possesses a finite mean (i.e. E[H ] < ∞) then the mean scanning
durations—in the un-halted and halted cases—differ only by the multiplicative factor (1 +
ηE[H ]). Hence, the comparison of the mean overall search durations with and without
relocation is essentially the same—from a mean-performance perspective—for the un-halted
and halted cases.

If the halting time H possesses an infinite mean (i.e. E[H ] = ∞) then so does the halted
scanning duration. Nonetheless, the halted overall search duration has a finite mean, and E[Tn]
is of order O(n). Thus, in the case of infinite-mean halting times, the presence of the relocation
mechanism is far more than beneficial—it is essential!

In the case of infinite-mean halting times the relocation mechanism has a most vital role:
it ‘bails out’ the scanning enzyme when ‘trapped’ in long halts—thus reducing the mean search
duration from infinite (with no relocation) to finite (with relocation).

13
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6.2. Sub-diffusive scanning

Consider now the case of a halted Brownian scan, in which the halting times are heavy tailed
with exponent β (0 < β < 1): namely, P(H > t) ∼ b/tβ as t → ∞.

In this case the resulting halted Brownian scan is a sub-diffusive motion [26]: its asymptotic
mean square displacement follows the sub-linear temporal growth Dβ · tβ—in sharp contrast
to the linear temporal growth D · t of the underlying Brownian motion3. Moreover, the
halted scanning duration is heavy tailed—its probability tails admitting the asymptotic form
(ηn2/6D) · P(H > t) (as t → ∞).

The sub-diffusive scan function ψhalt(λ) satisfies

ψhalt(λ) ∼
λ→0

√

2D
ηb�(1−β)√
λβ

and ψhalt(λ) ∼
λ→∞

√
2D√
λ
. (27)

Note that for small timer rates (λ � 1) the halted scan function admits a power-law form
corresponding to an H-selfsimilar scan with Hurst exponent H = β/2 (taking values in the
range 0 < H < 1/2), whereas for large timer rates (λ � 1) the halted scan function admits a
power-law form corresponding to a Brownian scan.

‘Selfsimilar’ halting mechanisms attain the power-law form H(θ) = bθβ with exponent
0 < β < 1 [26]. The resulting halted Brownian scan is sub-diffusive, its halted scan function
is given by ψhalt(λ) = √

2D/(λ+ bλβ), and its halted search function is given by

Fhalt(λ) = λ

(1 + E[R]λ)

(

l +
√

2D√
λ+ bλβ

)

. (28)

The halted search function Fhalt(λ) is unimodal: it initiates at the origin, increases
monotonically to a global maximum, and thereafter decreases monotonically to the asymptotic
level l/E[R]—see figure 5.

7. Massively parallel searching of stationary systems

The trajectory of a searching enzyme alternates between a 1D motion along the DNA strand,
and a confined motion in the medium containing the strand. The duration of the one-
dimensional motion, E , is exponentially distributed with rate λ (mean 1/λ), and the duration of
the confined motion is the relocation time R. The enzyme-trajectory is thus the concatenation
of independent and identically distributed random cycles of length E + R.

Consider, in the case of finite-mean relocation times, the ‘stationary setting’ in which

• the system is initiated at time t = −∞,
• the ‘search command’ is given at an arbitrary time epoch (say t = 0), and
• the search command can be communicated to the searching enzymes only while in the

confined-motion phase.

Thus, each enzyme is informed about the search command upon its first confined-motion
phase taking place after time t = 0. Recall that we denoted by R0 the enzymes’ initialization
time. Namely, R0 is the time it takes an enzyme, once the search command is given, to
commence its search procedure. Standard argumentation from the theory of renewal processes
implies that—in the ‘stationary setting’ just defined—the initialization time R0 is the residual
lifetime of the random variable E + R [27].

3 The precise value of the sub-diffusive coefficient is Dβ = D
ηb

sin(πβ)
πβ

.
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Figure 6. Massively parallel search of stationary systems: the logarithm of the survival probability
of the overall search duration. (a) The function�(t) (equation (29)) and its piecewise-linear support
function �sup(t) (equation (30)). (b) The difference �(t) = �(t)−�sup(t). The maximal vertical
distance is attained at the bending point t = 5 of the support function �sup(t). The parameters
taken are κ = 0.2, λ = 0.1, γ = 0.5, l = 1, and E[R] = 10.

Proposition 4 asserted that, in the case of massively parallel searching, the survival
probability of the limiting overall search duration is exp{−�(t)}, where the function �(t)
is characterized by the Laplace transform of equation (11). In general, it is not possible to
explicitly invert the Laplace transform of the function �(t). However, if the scan function
admits the power-law form ψ(λ) = c/λγ , with exponent 0 < γ � 1, and if the ‘stationary
setting’ defined above holds, then the function �(t) admits the probabilistic representation

�(t) = κλ

1 + E[R]λ
{

l · t + c

λγ
· E

[

(

t − Gλ,γ
)

+
]}

, (29)

where Gλ,γ is a Gamma(λ, γ )-distributed random variable4, and where (x)+ := max{0, x}
denotes the positive part of the real number x . The probabilistic representation of equation (29)
is highly amenable to Monte Carlo simulation.

The power-law form ψ(λ) = c/λγ (with exponent 0 < γ � 1) is attained by the following
classes of local scan mechanisms (described in section 5 above): linear scanning (c = v and
γ = 1); Brownian scanning (c = √

2D and γ = 1/2); and selfsimilar scanning (c = cH and
γ = H).

To readers familiar with risk-neutral valuation of financial derivatives [28], we note that
the term E[(t − Gλ,γ )+] corresponds to the price of a put option, with strike t , contingent on an
underlying risky asset governed by a Gamma(λ, γ ) risk-neutral probability law.

Properties of the function�(t)

The function �(t) initiates at the origin (�(0) = 0), is monotonically increasing (�′(t) > 0),
is convex (�′′(t) > 0), and is supported from below by the piecewise-linear function

�sup(t) = κλ

1 + E [R] λ

{

l · t + c

λγ
·
(

t − γ

λ

)

+

}

(30)

(that is,�(t) � �sup(t) for all t � 0)—see figure 6.
The ‘support’ function �sup(t) is tangent to the function �(t) at the origin (t = 0) and at

infinity (t → ∞). The maximal distance between the function �(t) and its support �sup(t) is

4 Namely, the random variable Gλ,γ is governed by the probability density function (λγ /�(γ )) exp{−λx}xγ−1 (x >
0).
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attained at the ‘bending point’ t = γ /λ of the piecewise-linear support function, and is given
by

max
t�0

{

�(t)−�sup(t)
} = κcλ1−γ

1 + E[R]λ · E
[

(γ

λ
− Gλ,γ

)

+

]

. (31)

The support function �sup(t) also provides us with the following upper bound to the mean
of the limiting search duration T∗:

E [T∗] � 1

κl

(

E[R] + 1

λ

) (

1 − c

c + lλγ
exp

{

− κlγ

1 + E[R]λ
})

. (32)

The proofs of the assertions made in this section are given in appendix B.

8. Conclusions

We have introduced and explored a stochastic model of an ensemble of enzymes searching
a circular DNA strand for a target site. The enzymes operate in parallel and independently,
following a search algorithm combining local scanning and random relocation.

Focusing on the case of long DNA strands, an asymptotic analysis of the search durations
was conducted—yielding closed-form formulae for the corresponding limiting probability
distributions. These formulae, in turn, enabled a quantitative formulation and answer to the
question ‘is relocation beneficial?’, and facilitated the derivation of the asymptotically optimal
relocation rates.

The theory developed encompasses the cases of both parallel and massively parallel
ensemble-searches, taking place in the presence of either finite-mean or heavy-tailed relocation
times. Moreover, the theory is applicable to a wide spectrum of local-scanning mechanisms,
including linear motions, Brownian motions, selfsimilar motions, and sub-diffusive motions.

Appendix A

A.1. Proposition 1 and its corollaries

Let E denote the timer’s duration (i.e., E is exponentially distributed with rate λ). Three
‘scenarios’, regarding the overall search duration T , are possible.

(1) The random initial position from which the search begins is within the target site. In this
scenario T = 0. The probability of this scenario is 1 − p = l/(l + n).

(2) The random initial position from which the search begins is not within the target site and
the local scan traced the target site before the timer expired. In this scenario T = S.

(3) The random initial position from which the search begins is not within the target site and
the timer expired before the local scan traced the target site. In this scenario E units of time
were spent on an unsuccessful local scan, R units of time were spent on relocation, and
then a new search began anew. Hence T = E + R + T ′ (T ′ being a copy of T which is
independent of E , S, and R).

Thus, we have

E[ f (T )] = (1 − p) · E[ f (0)] + p · E[ f (S)I{S � E}] + p · E[ f (E + R + T ′)I{S > E}],
(33)

where f (·) is an arbitrary function, and where I{E} denotes the indicator function of the
event E .
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With equation (33) at hand, we are now in a position to compute the Laplace transform of
the overall search duration T .

Laplace transform

Take f (t) = exp{−θ t}, where θ is a non-negative parameter.
Using conditioning, and the fact that E is exponentially distributed with rate λ, we have

E[exp{−θ S}I{S � E}] = E[exp{−θ S}P(S � E|S)]
= E[exp{−θ S} exp{−λS}] = E[exp{−(λ+ θ)S}] = ˜S(λ+ θ); (34)

and

E[exp{−θE}I{S > E}] = E
[∫ S

0
exp{−θ t} · λ exp{−λt} dt

]

= E
[

λ

λ+ θ
(1 − exp{−(λ+ θ)S})

]

= λ

λ+ θ

(

1 − ˜S(λ+ θ)
)

. (35)

Moreover, since T ′ is a copy of T which is independent of E, S and R, we further have

E
[

exp{−θ(E + R + T ′)}I{S > E}]
= E[exp{−θE}I{S > E}] · E[exp{−θ R}] · E[exp{−θT }]
= λ

λ+ θ

(

1 − ˜S(λ+ θ)
) · ˜R(θ) · ˜T (θ). (36)

Now, substituting equations (34) and (36) into equation (33) yields

˜T (θ) = (1 − p)+ p˜S(λ+ θ)+ p
λ

λ+ θ

(

1 − ˜S(λ+ θ)
)

˜R(θ)˜T (θ). (37)

Equation (37), in turn, implies that

˜T (θ) = 1 − p
(

1 − ˜S(λ+ θ)
)

1 − p
(

1 − ˜S(λ+ θ)
)

λ
λ+θ ˜R(θ)

.

Mean

The mean of the overall search duration T can be obtained either (i) by differentiation of the
Laplace transform ˜T (θ) at the origin or (ii) by taking f (t) = t in equation (33). We follow the
second alternative.

Using conditioning, and the fact that E is exponentially distributed with rate λ, we have

E[SI{S � E}] = E[SP(S � E|S)] = E[S exp{−λS}] = −˜S′(λ); (38)

E[EI{S > E}] = E
[∫ S

0
t · λ exp{−λt} dt

]

= E
[

−S exp{−λS} + 1

λ
(1 − exp{−λS})

]

= ˜S′(λ)+ 1

λ

(

1 − ˜S(λ)
) ; (39)

and

P(S > E) = E[P(S > E|S)] = E[1 − exp{−λS}] = 1 − ˜S(λ). (40)

Moreover, since T ′ is a copy of T which is independent of E, S and R, we further have

E[(E + R + T ′)I{S > E}]
= E[EI{S > E}] + E[R] · P(S > E)+ E[T ] · P(S > E)
= ˜S′(λ)+ 1

λ
(1 − ˜S(λ))+ E[R](1 − ˜S(λ))+ E[T ](1 − ˜S(λ)). (41)
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Now, substituting equations (38) and (41) into equation (33) yields

E[T ] = p

(

1

λ

(

1 − ˜S(λ)
) + E[R](1 − ˜S(λ))+ E[T ](1 − ˜S(λ))

)

. (42)

Equation (42), in turn, implies that

E[T ] = p
(

1 − ˜S(λ)
)

1 − p
(

1 − ˜S(λ)
) ·

(

E[R] + 1

λ

)

.

Heavy tails

Set q := p(1 − ˜S(λ)), and note that

˜T (θ) ∼
θ→0

1 − q

1 − q ˜R(θ)
= 1

1 + q
1−q

(

1 − ˜R(θ)
) ∼
θ→0

1 − q

1 − q

(

1 − ˜R(θ)
)

. (43)

Equation (43), in turn, implies that

1 − ˜T (θ) ∼
θ→0

q

1 − q

(

1 − ˜R(θ)
)

. (44)

Since the relocation time R is heavy tailed of order α (0 < α < 1), Karamata’s Tauberian
theorem for random variables (see corollary 8.1.7 in [29]) implies that

1 − ˜R(θ) ∼
θ→0

�(1 − α) · P (R > 1/θ) , (45)

and hence

1 − ˜T (θ) ∼
θ→0

�(1 − α) · q

1 − q
P (R > 1/θ) . (46)

Applying Karamata’s Tauberian theorem for random variables to equation (46) yields

P(T > t) ∼
t→∞

q

1 − q
P(R > t).

A.2. Propositions 2 and 3

We shall make use of the following result.
Let {δn}∞n=1 be a non-negative valued sequence satisfying

n
(

1 − ˜R(δn)
) −→

n→∞ A and nδn −→
n→∞ B (47)

(where A and B are non-negative valued limits). Then

˜Tn(δn) −→
n→∞

(

1 + A + B/λ

l + ψ(λ)

)−1

. (48)

The proof of equation (48) is given below.

Finite-mean relocation times

Fix θ � 0 and set δn = θ/n. Since the relocation time possesses a finite mean we have

n
(

1 − ˜R(δn)
) −→

n→∞ E[R]θ. (49)

On the other hand we have limn→∞ nδn = θ . Hence, equation (48) implies that

E
[

exp

{

−θ Tn

n

}]

= ˜Tn(δn) −→
n→∞

(

1 + E[R] + 1/λ

l + ψ(λ)
· θ

)−1

. (50)

Noting that the right-hand side of equation (50) is the Laplace transform of an exponential
distribution with mean (l + ψ(λ))/(E[R] + 1/λ) concludes the proof.
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Infinite-mean relocation times

Assume that the relocation rate is heavy tailed with exponent α (0 < α < 1): namely,
P(R > t) ∼ a/tα as t → ∞. Fix θ � 0 and set δn = θ/n1/α. Karamata’s Tauberian
theorem for random variables (see corollary 8.1.7 in [29]) implies that

1 − ˜R(δn) ∼
n→∞�(1 − α) · P (R > 1/δn) ∼

n→∞�(1 − α)aθα · 1

n
, (51)

and hence

n
(

1 − ˜R(δn)
) −→

n→∞�(1 − α)aθα. (52)

On the other hand we have limn→∞ nδn = 0. Hence, equation (48) implies that

E
[

exp

{

−θ Tn

n1/α

}]

= ˜Tn(δn) −→
n→∞

(

1 + �(1 − α)a

l + ψ(λ)
· θα

)−1

. (53)

The right-hand side of equation (53) is the Laplace transform of a limiting random variable T∞.
Moreover,

1 − ˜T∞(θ) ∼
θ→0

�(1 − α)a

l + ψ(λ)
· θα = �(1 − α) · P (R > 1/θ)

l + ψ(λ)
, (54)

and hence Karamata’s Tauberian theorem for random variables implies that

P(T∞ > t) ∼
t→∞

P(R > 1/θ)

l + ψ(λ)
.

The limiting random variable T∞ admits the multiplicative probabilistic representation
T∞ = L · E1/α where (i) the random variable L is Lévy distributed with Laplace transform
˜L(θ) = exp{−�(1 −α)aθα}, (ii) the random variable E is exponentially distributed with mean
1/(l + ψ(λ)), and (iii) L and E are independent random variables. Indeed, using conditioning
we obtain that

E
[

exp
{−θL · E1/α

}] = E
[

E
[

exp
{−θL · E1/α

} |E]] = E
[

exp {−�(1 − α)aθαE}]

=
(

1 + �(1 − α)a

l + ψ(λ)
· θα

)−1

.

Proof of equation (48)

A straightforward calculation gives

˜Tn(δn) = 1 − pn
(

1 − ˜Sn (λ+ δn)
)

1 − pn
(

1 − ˜Sn (λ+ δn)
)

λ˜R(δn)

λ+δn

= (λ+ δn) ·
[

1 − pn
(

1 − ˜Sn (λ+ δn)
)]

λ˜R(δn)
[

1 − pn
(

1 − ˜Sn (λ+ δn)
)] + [

δn + λ
(

1 − ˜R(δn)
)]

= (λ+ δn) ·
(

λ˜R (δn)+ δn + λ
(

1 − ˜R (δn)
)

1 − pn
(

1 − ˜Sn (λ+ δn)
)

)−1

=
(

1 + 1

λ
δn

)

·
(

˜R(δn)+ n
(

1 − ˜R (δn)
) + 1

λ
· nδn

pn · (l + n˜Sn (λ+ δn)
)

)−1

. (55)

The limit limn→∞ nδn = B implies that limn→∞ δn = 0, and hence (i) limn→∞ ˜R(δn) = 1 and
(ii) limn→∞ n˜Sn(λ+ δn) = ψ(λ). These limits, in turn, imply the limit of equation (48):
(

1 + 1

λ
δn

)

·
(

˜R(δn)+ n
(

1 − ˜R (δn)
) + 1

λ
· nδn

pn · (l + n˜Sn (λ+ δn)
)

)−1

−→
n→∞

(

1 + A + B/λ

l + ψ(λ)

)−1

.
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A.3. Proposition 4 and its corollaries

Set �n(t) := P(R0 + Tn � t) (t � 0) to be the cumulative distribution function of the random
sum R0 + Tn.

Laplace transform

The Laplace transform of the function m�n(t) is given by
∫ ∞

0
exp{−θ t} (m�n(t)) dt = m

θ

∫ ∞

0
exp{−θ t}�′

n(t) dt = m

θ
˜(R0 + Tn)(θ)

= m

θ
˜R0(θ)˜Tn(θ) = m

n
·

˜R0(θ)

θ
· (

n˜Tn(θ)
)

. (56)

Using proposition 1, together with the technical condition of equation (4), we obtain the limit

n˜Tn(θ) = n · 1 − pn
(

1 − ˜Sn(λ+ θ)
)

1 − pn
(

1 − ˜Sn(λ+ θ)
)

λ
λ+θ ˜R(θ)

= l + n˜Sn(λ+ θ)
(

1 − λ
λ+θ ˜R(θ)

) + 1
n

(

l + n˜Sn(λ+ θ)
) −→

n→∞
l + ψ(λ + θ)

1 − λ
λ+θ ˜R(θ)

, (57)

which, in turn, implies that

∫ ∞

0
exp{−θ t} (m�n(t)) dt −→

n,m→∞ κ ·
˜R0(θ)

θ
· l + ψ(λ + θ)

1 − λ
λ+θ ˜R(θ)

. (58)

Thus, we have obtained that limn,m→∞ m�n(t) = �(t), where the Laplace transform of the
limit function �(t) is given by the right-hand side of equation (58).

Using equation (7), and the limit limn,m→∞ m�n(t) = �(t), we conclude that

P
(

T m
n > t

) = (P (R0 + Tn > t))m = (1 −�n(t))
m

=
(

1 − m�n(t)

m

)m

−→
n,m→∞ exp {−�(t)} . (59)

Finite-mean relocation times

If the relocation time R possesses a finite mean then

1 − λ

λ+ θ
˜R(θ) ∼

θ→0

(

E[R] + 1

λ

)

· θ, (60)

and hence
∫ ∞

0
exp{−θ t}�(t) dt = κ

˜R0(θ)

θ
· l + ψ(λ+ θ)

1 − λ
λ+θ ˜R(θ)

∼
θ→0

κ
l + ψ(λ)

E [R] + 1/λ
· 1

θ2
. (61)

Karamata’s Tauberian theorem for functions (see theorem 1.7.1 in [29]), in turn, implies that

�(t) ∼
t→∞ κ

l + ψ(λ)

E[R] + 1/λ
· t .
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Infinite-mean relocation times

Assume that the relocation rate is heavy tailed with exponent α (0 < α < 1): namely,
P(R > t) ∼ a/tα as t → ∞. Karamata’s Tauberian theorem for random variables (see
theorem 1.7.1 in [29]) implies that

1 − λ

λ+ θ
˜R(θ) ∼

θ→0
�(1 − α)aθα, (62)

and hence
∫ ∞

0
exp{−θ t}�(t) dt = κ

˜R0(θ)

θ
· l + ψ(λ+ θ)

1 − λ
λ+θ ˜R(θ)

∼
θ→0

κ
l + ψ(λ)

�(1 − α)a
· 1

θ1+α . (63)

Karamata’s Tauberian theorem for functions (see theorem 1.7.1 in [29]), in turn, implies that

�(t) ∼
t→∞ κ

l + ψ(λ)

�(1 − α)a
· tα

�(1 + α)
. (64)

Using the identity �(1 − α)�(1 + α) = πα/ sin(πα) (which holds in the range 0 < α < 1),
we conclude that

�(t) ∼
t→∞ κ

sin(πα)

πα
· l + ψ(λ)

P (R > t)
.

A.4. Proposition 5

We shall make use of the following result.
Let a(λ)x + b(λ) (x > 0) be the tangent line to the function φ(x), passing through the

point λ. Then

a(λ) = φ′(λ) −→
λ→∞ 0 and b(λ) = φ(λ)− λφ′(λ) −→

λ→∞ ∞. (65)

The proof of equation (65) is given below.
Consider the search function

F(λ) = l + ψ(λ)

E[R] + 1/λ
= φ(λ)+ lλ

1 + E[R]λ. (66)

The fact that φ(0) = 0 implies that F(0) = 0, and the fact that limλ→∞ ψ(λ) = 0 implies that
limλ→∞ F(λ) = l/E[R].

The derivative of the function F(λ) is given by

F ′(λ) = l − G(λ)

(1 + E[R]λ)2 , (67)

where

G(λ) := E[R]φ(λ)− (1 + E[R]λ) φ′(λ) = E[R]b(λ)− a(λ). (68)

Now we have the following.

(i) The fact that the function φ(x) is non-negative valued, concave, and satisfies φ(0) = 0
implies that φ′(0) � 0. This, in turn, implies that G(0) � 0.

(ii) Equation (65) implies that limλ→∞ G(λ) = ∞.
(iii) Since G ′(λ) = −(1 + E[R]λ)φ′′(λ) the fact that the function φ(λ) is concave implies that

G ′(λ) > 0.

Thus, the function G(λ) initiates from a non-positive level and increases monotonically
to infinity. This, in turn, implies that the function F(λ) is monotonically increasing in the
range λ < G−1(l), attains its global maximum at the point λ = G−1(l) and is monotonically
decreasing in the range λ > G−1(l).
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Proof of equation (65)

The fact that the function φ(x) is concave and satisfies φ(0) = 0, combined with the mean-
value theorem, implies that

ψ(λ) = φ(λ) − φ(0)

λ− 0
= φ′(θλ) � φ′(λ) = a(λ) (69)

(for some 0 < θλ < λ). On the other hand, the function φ(x)—since it is positive valued and
concave—is monotonically increasing: a(x) = φ′(x) � 0. Hence, the limit limλ→∞ ψ(λ) = 0
implies that limλ→∞ a(λ) = 0.

We turn now to prove, by contradiction, that limλ→∞ b(λ) = ∞. Assume that the function
b(λ) is bounded: namely, that b(λ) � M for all λ > 0 (where M is some positive constant).
By concavity, the function φ(x) lies below the tangent line a(λ)x + b(λ), and hence

φ(x) � a(λ)x + b(λ) � a(λ)x + M. (70)

Now, taking λ → ∞, while using the fact that limλ→∞ a(λ) = 0, implies that φ(x) �
M . Thus, we obtained that the function φ(λ) is bounded—in contradiction to the fact that
limλ→∞ φ(λ) = ∞. Hence limλ→∞ b(λ) = ∞.

Appendix B

B.1. Brownian motion on the unit interval

Consider a standard Brownian motion on the unit interval, initiated from the starting point
x ∈ [0, 1]. Let τx denote its first passage time (FPT) to the boundary {0, 1} of the unit interval.

Fix θ � 0 and set U(x) : = τ̃x(θ). The celebrated Feynman–Kac formula (see, for
example, [30]) asserts that the function U(x) satisfies the differential equation 1

2 U ′′(x) =
θU(x), with the boundary conditions U(0) = 1 = U(1). Solving this equation yields

τ̃x(θ) = (exp{l√2θ} − 1) · exp{−x
√

2θ} + (1 − exp{−l
√

2θ}) · exp{x
√

2θ}
exp{l√2θ} − exp{−l

√
2θ} . (71)

Assume now that the starting point is randomly located on the unit interval, and let τ
denote the corresponding FPT. Averaging over equation (71) we obtain that

τ̃ (θ) =
∫ 1

0
τ̃x(θ) dx = tanh

(√
θ/2

)

√
θ/2

. (72)

Moreover, expanding the right-hand side of equation (72) into a power series yields

τ̃ (θ) = 1 − 1

6
· θ + 1

15
· θ

2

2
− · · · , (73)

which, in turn, implies that

E[τ ] = 1
6 and Var[τ ] = 7

180 . (74)

B.2. Brownian local scanning

Consider a local Brownian scan initiated from a random starting point on the ‘non-target’ part
of a DNA strand. We parametrize the strand’s ‘non-target’ part by the interval [0, n]. Clearly,
the duration of a local scan Sn is the FPT of the interval [0, n]—by a Brownian motion with
diffusion parameter D, initiated from a random position on the interval.
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Let (B(t))t�0 be a standard Brownian motion, and let X be a uniformly distributed random
variable on the unit interval. Then, using the definition of the FPTs Sn and τ , and using the
scaling properties of the Brownian motion, we have (the equalities below being in law)

Sn = inf
{

t � 0|nX + √
D · B(t) /∈ [0, n]

}

= inf

{

t � 0|X +
√

D

n
· B(t) /∈ [0, 1]

}

= inf

{

t � 0|X + B

(

D

n2
t

)

/∈ [0, 1]
}

= n2

D
· inf

{

t ′ � 0|X + B
(

t ′) /∈ [0, 1]} = n2

D
· τ (75)

(using the change of variables t ′ := Dn−2 · t).
Hence, combining equations (72) and (75) together we conclude that

˜Sn(θ) =
tanh(n

√

θ
2D )

n
√

θ
2D

.

B.3. Selfsimilar local scan

Consider a local scan conducted by an H-selfsimilar stochastic process Z = (Z(t))t�0 with
continuous sample-path trajectories. Let τH denote the first passage time of the H-selfsimilar
motion from the unit interval, when initiated from a random location on the unit interval.

In full analogy with equation (75) we have (the equalities below being in law)

Sn = inf {t � 0|nX + Z(t) /∈ [0, n]} = inf

{

t � 0|X + 1

n
· Z(t) /∈ [0, 1]

}

= inf
{

t � 0|X + Z
(

n−1/Ht
)

/∈ [0, 1]}

= n1/H · inf
{

t ′ � 0|X + Z
(

t ′) /∈ [0, 1]} := n1/H · τH, (76)

(using the change of variables t ′ := n−1/H · t).
Let {δn}∞n=1 be an arbitrary non-negative valued sequence decaying to zero. The scaling

Sn = n1/H · τH implies that

n · ˜Sn (λ+ δn) = n · τ̃H
(

(λ+ δn)n
1/H

) =
(

kn

λ+ δn

)H

· τ̃H (kn)

=
(

1

λ+ δn

)H

· (kH

n · τ̃H (kn)
)

, (77)

where kn := (λ+δn)n1/H. Hence, if the limit limk→∞ kH · τ̃H(k) := cH exists then equation (77)
yields

lim
n→∞ n · ˜Sn (λ+ δn) = 1

λH
· lim

k→∞
kH · τ̃H(k) = cH

λH
.

B.4. Massively parallel searching of stationary systems

In the ‘stationary setting’ the initialization time R0 is the residual lifetime of the random
variable E + R. Hence the Laplace transform of the initialization time R0 is given by [27]

˜R0(θ) = 1 − ˜(E + R)(θ)

E [E + R] · θ = 1 − λ
λ+θ ˜R(θ)

(

1
λ

+ E[R]) · θ (78)
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(θ � 0). Substituting equation (78) and ψ(λ) = c/λγ into equation (11) yields

∫ ∞

0
exp{−θ t}�(t) dt = κ

˜R0(θ)

θ
· l + ψ(λ+ θ)

1 − λ
λ+θ ˜R(θ)

= κ
1 − λ

λ+θ ˜R(θ)
(

1
λ

+ E[R]) θ2
· l + c

(λ+θ)γ
1 − λ

λ+θ ˜R(θ)

= κλ

1 + E[R]λ
{

l

θ2
+ c

λγ

1

θ2

(

λ

λ+ θ

)γ}

. (79)

Now,

(1)

1

θ2
=

∫ ∞

0
exp{−θ t} f1(t) dt (80)

where f1(t) = t ,

(2)
(

λ

λ+ θ

)γ

=
∫ ∞

0
exp{−θ t} f2(t) dt (81)

where f2(t) = (λγ /�(γ )) exp{−λt}t1−γ is the probability density function of the
Gamma(λ, γ ) distribution, and

(3)

1

θ2

(

λ

λ+ θ

)γ

=
∫ ∞

0
exp{−θ t} f3(t) dt (82)

where f3(t) is the convolution of the functions f1(t) and f2(t). Hence

f3(t) =
∫ t

0
f1(t − s) f2(s) ds =

∫ ∞

0
(t − s)+ f2(s) ds = E

[

(

t − Gλ,γ
)

+
]

, (83)

where Gλ,γ is a Gamma(λ, γ )-distributed random variable (and where (x)+ := max{0, x}
denotes the positive part of a real number x).

Combining the above together yields
∫ ∞

0
exp{−θ t}�(t) dt = κλ

1 + E[R]λ
{

l

θ2
+ c

λγ

1

θ2

(

λ

λ+ θ

)γ}

= κλ

1 + E[R]λ
{

l ·
∫ ∞

0
exp{−θ t} f1(t) dt + c

λγ
·
∫ ∞

0
exp{−θ t} f3(t) dt

}

=
∫ ∞

0
exp{−θ t}

(

κλ

1 + E[R]λ
{

l · f1(t)+ c

λγ
· f3(t)

}

)

dt, (84)

which, in turn, implies that

�(t) = κλ

1 + E[R]λ
{

l · f1(t)+ c

λγ
· f3(t)

}

= κλ

1 + E[R]λ
{

l · t + c

λγ
· E

[

(

t − Gλ,γ
)

+
]}

.

(85)

We now turn to prove the assertions made in section 7 regarding the function �(t) and its
piecewise-linear support�sup(t).
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Monotonicity and convexity

Differentiating the function �(t) yields

�′(t) = κλ

1 + E[R]λ
{

l + c

λγ
· P

(Gλ,γ � t
)

}

> 0 (86)

• implying that the function �(t) is monotonically increasing, and

�′′(t) = cκλ

�(γ ) (1 + E[R]λ) exp{−λt}t1−γ > 0 (87)

• implying that the function �(t) is convex.

Support from below

Jensen’s inequality (see, for example, [31]) gives

E
[

(

t − Gλ,γ
)

+
]

�
(

t − E
[Gλ,γ

])

+ =
(

t − γ

λ

)

+
, (88)

which, in turn, implies that the function �(t) is supported from below as follows:

�(t) = κλ

1 + E[R]λ
{

l · t + c

λγ
· E

[

(

t − Gλ,γ
)

+
]}

� κλ

1 + E[R]λ
{

l · t + c

λγ
·
(

t − γ

λ

)

+

}

:= �sup(t). (89)

The support function�sup(t)

Set �(t) := �(t)−�sup(t). By the definition of the functions �(t) and �sup(t) we have

�(t) = c
(

E
[

(

t − Gλ,γ
)

+
]

− (t − μ)+
)

(90)

and

�′(t) = c
(

P
(Gλ,γ � t

) − I{t − μ}) , (91)

where c1 := κcλ1−γ /(1 + E[R]λ) and μ := E[Gλ,γ ] = γ /λ (and where I{E} denotes the
indicator function of the event E).

Now we have the following.

(1) �(0) = 0 and �′(0) = 0. Hence, the support function �sup(t) is tangent to the function
�(t) at the origin.

(2)

lim
t→∞�(t) = c1 lim

t→∞

(

E
[

(

t − Gλ,γ
)

+
]

− (t − μ)+
)

= c1 lim
t→∞

((

t −
∫ t

0
P

(Gλ,γ > s
)

ds

)

− (t − μ)

)

= c1 lim
t→∞

(

μ−
∫ t

0
P

(Gλ,γ > s
)

ds

)

= c1

(

μ−
∫ ∞

0
P

(Gλ,γ > s
)

ds

)

= c1
(

μ− E
[Gλ,γ

]) = 0 (92)

and

lim
t→∞�

′(t) = c1 lim
t→∞

(

P
(Gλ,γ � t

) − I{t − μ}) = 0. (93)

Hence, the support function �sup(t) is tangent to the function �(t) at infinity.
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(3)

�′(t) = c1 ·
{

P
(Gλ,γ � t

)

t < μ

−P
(Gλ,γ > t

)

t > μ
(94)

and thus the function �(t) is monotonically increasing in the interval (0, μ), and
monotonically decreasing in the interval (μ,∞). Hence, the global maximum of the
function �(t) is attained at the point t = μ and its value is

�(μ) = κcλ1−γ

1 + E [R] λ
· E

[

(γ

λ
− Gλ,γ

)

+

]

. (95)

Upper bound for E[T∗]
Using the limiting distribution of proposition 4, and the inequality �(t) � �sup(t), we obtain
that

E [T∗] =
∫ ∞

0
P (T∗ > t) dt =

∫ ∞

0
exp {−�(t)} dt �

∫ ∞

0
exp

{−�sup(t)
}

dt . (96)

Since the support function �sup(t) is piecewise linear we further have (using the shorthand
notation c1 := κcλ1−γ /(1 + E[R]λ) and c2 := κlλ/(1 + E[R]λ))
∫ ∞

0
exp

{−�sup(t)
}

dt

=
∫ μ

0
exp{−c2t} dt +

∫ ∞

μ

exp{− (c2t + c1(t − μ))} dt

= 1

c2
(1 − exp{−c2μ})+ 1

c2 + c1
exp{−c2μ} = 1

c2

(

1 − c1

c2 + c1
exp{−c2μ}

)

= 1

κl

(

E[R] + 1

λ

) (

1 − c

c + lλγ
exp

{

− κlγ

1 + E[R]λ
})

. (97)
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